日益增長的節(jié)能環(huán)保要求正不斷推動著汽車輕量化進程,相較鎂鋁等輕質材料,65錳冷軋鋼板汽車用鋼面臨著全流程綠色生產、高強高塑及優(yōu)良成形性等多方面的挑戰(zhàn)。
以中錳鋼和淬火&配分(Q&P)鋼為典型代表的第三代先進高強鋼(AHSS)在汽車輕量化材料中具有良好的競爭力65錳鋼板。本論文主要從第三代AHSS的關鍵相——亞穩(wěn)態(tài)殘留奧氏體的設計出發(fā),結合中錳鋼的奧氏體逆轉變退火(ART)工藝及Q&P工藝,設計并制備了具有高殘留奧氏體含量的超高強含鋁中錳鋼,系統(tǒng)性探索殘留奧氏體含量、形態(tài)、尺寸及周圍基體相的分布與其相變誘導塑性(TRIP)效應的相互關系,實現(xiàn)低成本、簡工序的超高強(抗拉強度>1300MPa,強塑積>35GPa·%)含鋁中錳鋼的組織調控及強韌化機制研究。低成本無合金元素的“C-Si-Mn-Al”系成分設計及短工序低能耗的制備流程為汽車輕量化提供了優(yōu)質的選材。
采用0.3C-1.5Si-4Mn,wt.%為基本合金體系,利用梯度鋁含量(1\2\4,wt.%)調控中錳系鋼的臨界區(qū)溫度及工藝窗口,實現(xiàn)高65mn錳冷軋鋼板強度的基體組織設計,即“鐵素體+殘留奧氏體”的含鋁中錳TRIP鋼及“鐵素體+回火馬氏體+殘留奧氏體”的含鋁中錳淬火及回火配分(IQ-TP)鋼。采用掃描電鏡SEM、透射電鏡TEM、電子背散射衍射EBSD、X射線衍射儀XRD等顯組織形貌表征技術及相分析手段,結合原位變形技術系統(tǒng)性分析超高強含鋁中錳鋼的多元復合組織構成、應變協(xié)調性及強韌化機制;同時借助于電子探針EPMA分析宏觀元素偏析行為,利用Thermo calc\DICTRA熱力學動力學軟件及原子探針層析術(APT)等深層次揭示觀元素配分規(guī)律;合理調控臨界區(qū)奧氏體化溫度、加熱速率、65mn錳冷軋鋼板壓下率等工藝參數,實現(xiàn)殘留奧氏體及其他基本相的 化配置,改善或中錳系鋼中的屈服平臺及PLC塑性失穩(wěn)現(xiàn)象。
隨著預應變量的增加,退火鐵素體中的位錯密度明顯65錳鋼板增加,部分穩(wěn)定性差的大尺寸RA首先發(fā)生相變而使得RA量逐漸降低,穩(wěn)定性逐漸提高;抗拉強度與屈服強度逐漸提高,而斷后伸長率則逐漸降低。熱軋退火實驗鋼具有高的氫脆敏感性,隨著預應變量的增大,氫脆敏感性逐漸增大,以相對伸長率損失表征的氫脆敏感性指數由未變形樣的75.9%提高到15%預應變樣的83.2%。充氫樣SSRT宏觀斷口邊部存在脆性平臺,其斷裂機制主要為準解理斷裂,且有較多二次裂紋。
65mn冷軋鋼板退火實驗鋼具有超細晶等軸狀的退火鐵素體+RA復相組織,在預應變過程中發(fā)生了TWIP效應和TRIP效應并出現(xiàn)不穩(wěn)定的中間相ε-馬氏體。與熱軋退火實驗鋼類似,預應變能夠顯著地改變冷軋退火實驗鋼的力學性能。冷軋退火中錳鋼在拉伸過程中出現(xiàn)呂德斯帶以及PLC現(xiàn)象。當預應變量等于呂德斯帶對應的應變時,即預應變量約為3%時,可以使呂德斯帶消失,但預應變對PLC效應則幾乎沒有影響。這主要與隨著預應變量增加,實驗鋼中位錯密度增加、RA穩(wěn)定性提高、形變誘導馬氏體含量增加及形變孿晶的產生等因素有關。對于冷軋退火中錳鋼實驗料,隨著預應變量的增加,充氫試樣中的可擴散氫含量顯著增加而氫擴散系數降低。與熱軋退火實驗鋼類似,冷軋退火實驗鋼同樣表現(xiàn)出顯著的氫脆敏感性,并且隨著預應變量的增加,氫脆敏感性逐漸增大。
65錳鋼板不同預應變量未充氫樣的SSRT斷口呈現(xiàn)典型的韌窩韌性斷裂特征,而充氫預應變樣斷口由近表面的脆性沿晶+準解理的混合斷裂向心部的韌窩韌性斷裂模式逐漸轉變。
努力成為客戶依賴的企業(yè)-眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(襄陽市分公司),公司主營: 45#特厚板材
近年來,中65錳鋼板因具有優(yōu)異的強塑積且兼顧了經濟性與工業(yè)可行性而成為了第三代汽車用鋼中的一個研究熱點,如何進一步提高其力學性能是人們研究的重點之一。
基于此,本文在傳統(tǒng)中錳鋼研究的基礎上,設計了一種V合金化中錳鋼并對其進行了熱軋、冷軋、溫軋及隨后的兩相區(qū)退火處理,較為系統(tǒng)地研究了實驗鋼在不同軋制狀態(tài)及不同退火溫度下的觀組織和力學性能變化規(guī)律,探討了V合金化對中錳鋼強度的影響。得到的主要結果如下:本文通過研究熱軋+兩相區(qū)退火(625℃-800℃)處理的實驗鋼組織與力學性能,得出的結果表明:實驗鋼組織主要為長條狀δ-鐵素體、板條狀的α-鐵素體+殘余奧氏體(Retained austenite,RA)以及大量細小彌散的VC析出相。對于625℃和750℃的兩相區(qū)退火試樣,VC的析出強化增量分別為-347 MPa和-234 MPa;隨著退火溫度(Intercritical annealing temperature,TIA)的,65錳冷軋鋼板VC析出相尺寸增大和RA板條粗化引起了屈服強度的顯著降低。
隨著TIA的,RA含量先增加后降低,穩(wěn)定性持續(xù)降低,導致實驗鋼的強塑積先增加后降低;當TIA為725℃時,可獲得高達-50GPa·%的強塑積,并且屈服強度達到890 MPa,從而具有優(yōu)異的強塑性配合。通過研究冷軋+兩相區(qū)退火(650℃-800℃)處理的實驗鋼組織與力學性能,其結果表明:冷軋退火態(tài)實驗鋼的組織主要為長條狀δ-鐵素體、等軸狀α-鐵素體+RA以及大量細小彌散的VC析出相。65mn錳冷軋鋼板其中,當TIA較低時,組織中存在少量板條狀組織;隨著TIA升高,板條狀組織逐漸消失,等軸狀組織逐漸增多。此外,隨著TIA的升高,RA含量逐漸增加而RA穩(wěn)定性持續(xù)降低,導致實驗鋼的強塑積先增加后降低。其中,當TIA為700℃時,獲得高達-52.6GPa·%的強塑積。通過研究溫軋以及溫軋+兩相區(qū)退火(650℃-800℃)處理的實驗鋼組織與力學性能,其結果表明:溫軋原始態(tài)及溫軋+退火態(tài)實驗鋼的組織均為δ-鐵素體、板條狀與少量等軸狀共存的α-鐵素體+RA以及大量細小彌散VC析出相。當TIA為650-750℃時,其強塑積均能保持在50 GPa·%以上,這表明溫軋?zhí)幚硎箤嶒炰摼哂休^寬的熱處理工藝窗口。因此,溫軋?zhí)幚碛锌赡艹蔀橐环N簡化傳統(tǒng)中錳鋼生產應用的新方法。