眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(內(nèi)蒙古分公司)崇尚“創(chuàng)造價值、合作共贏、持續(xù)發(fā)展”的經(jīng)營理念,引進(jìn)大批高技術(shù)人才和管理人才,以提高公司的知識架構(gòu)和管理水平,從而增加 45#特厚板材產(chǎn)品的科技含量,確保 45#特厚板材產(chǎn)品種類推陳出新。公司立志以專業(yè)的生產(chǎn)技術(shù)和產(chǎn)業(yè)優(yōu)勢,憑借越的品質(zhì),完善的服務(wù),便捷的交通,快速及時的物流系統(tǒng)在業(yè)界贏得良好的口碑,經(jīng)受 45#特厚板材市場的考驗,贏在中國,走向世界。
近年來,中65錳鋼板因具有優(yōu)異的強(qiáng)塑積且兼顧了經(jīng)濟(jì)性與工業(yè)可行性而成為了第三代汽車用鋼中的一個研究熱點,如何進(jìn)一步提高其力學(xué)性能是人們研究的重點之一。
基于此,本文在傳統(tǒng)中錳鋼研究的基礎(chǔ)上,設(shè)計了一種V合金化中錳鋼并對其進(jìn)行了熱軋、冷軋、溫軋及隨后的兩相區(qū)退火處理,較為系統(tǒng)地研究了實驗鋼在不同軋制狀態(tài)及不同退火溫度下的觀組織和力學(xué)性能變化規(guī)律,探討了V合金化對中錳鋼強(qiáng)度的影響。得到的主要結(jié)果如下:本文通過研究熱軋+兩相區(qū)退火(625℃-800℃)處理的實驗鋼組織與力學(xué)性能,得出的結(jié)果表明:實驗鋼組織主要為長條狀δ-鐵素體、板條狀的α-鐵素體+殘余奧氏體(Retained austenite,RA)以及大量細(xì)小彌散的VC析出相。對于625℃和750℃的兩相區(qū)退火試樣,VC的析出強(qiáng)化增量分別為-347 MPa和-234 MPa;隨著退火溫度(Intercritical annealing temperature,TIA)的,65錳冷軋鋼板VC析出相尺寸增大和RA板條粗化引起了屈服強(qiáng)度的顯著降低。
隨著TIA的,RA含量先增加后降低,穩(wěn)定性持續(xù)降低,導(dǎo)致實驗鋼的強(qiáng)塑積先增加后降低;當(dāng)TIA為725℃時,可獲得高達(dá)-50GPa·%的強(qiáng)塑積,并且屈服強(qiáng)度達(dá)到890 MPa,從而具有優(yōu)異的強(qiáng)塑性配合。通過研究冷軋+兩相區(qū)退火(650℃-800℃)處理的實驗鋼組織與力學(xué)性能,其結(jié)果表明:冷軋退火態(tài)實驗鋼的組織主要為長條狀δ-鐵素體、等軸狀α-鐵素體+RA以及大量細(xì)小彌散的VC析出相。65mn錳冷軋鋼板其中,當(dāng)TIA較低時,組織中存在少量板條狀組織;隨著TIA升高,板條狀組織逐漸消失,等軸狀組織逐漸增多。此外,隨著TIA的升高,RA含量逐漸增加而RA穩(wěn)定性持續(xù)降低,導(dǎo)致實驗鋼的強(qiáng)塑積先增加后降低。其中,當(dāng)TIA為700℃時,獲得高達(dá)-52.6GPa·%的強(qiáng)塑積。通過研究溫軋以及溫軋+兩相區(qū)退火(650℃-800℃)處理的實驗鋼組織與力學(xué)性能,其結(jié)果表明:溫軋原始態(tài)及溫軋+退火態(tài)實驗鋼的組織均為δ-鐵素體、板條狀與少量等軸狀共存的α-鐵素體+RA以及大量細(xì)小彌散VC析出相。當(dāng)TIA為650-750℃時,其強(qiáng)塑積均能保持在50 GPa·%以上,這表明溫軋?zhí)幚硎箤嶒炰摼哂休^寬的熱處理工藝窗口。因此,溫軋?zhí)幚碛锌赡艹蔀橐环N簡化傳統(tǒng)中錳鋼生產(chǎn)應(yīng)用的新方法。
3)65錳冷軋鋼板o熱軋實驗鋼佳臨界退火+淬火和配分(IA&QP)工藝參數(shù)為760℃臨界區(qū)退火30min,180℃等溫淬火10s并在350℃等溫配分180s。該工藝下熱軋實驗鋼展現(xiàn)出了 力學(xué)性能,即抗拉強(qiáng)度1231MPa,伸長率24.8%,強(qiáng)塑積可達(dá)30.5GPa·%。IA&QP工藝處理后4Mn-Nb-Mo熱軋實驗鋼的抗拉強(qiáng)度均超過了 1024MPa,但伸長率和RA含量不高。
(4)采用新型循環(huán)淬火和奧氏體逆相變(CQ-ART)65錳鋼板工藝處理后的4Mn-Nb-Mo冷軋實驗鋼,晶粒尺寸得到了明顯的細(xì)化,同時RA含量顯著提高。兩次循環(huán)淬火后的CQ2-ART冷軋試樣具有高RA含量(62.0%)、佳晶粒尺寸(0.40μm)以及穩(wěn)定性;這為RA在變形期間TRIP效應(yīng)的產(chǎn)生提供了有力的保證。終CQ2-ART試樣獲得了 綜合性能,即抗拉強(qiáng)度為838MPa,伸長率為90.8%,強(qiáng)塑積達(dá)到76.1GPa·%。(5)研究4Mn-Nb-Mo和5Mn-Nb-Mo實驗鋼奧氏體穩(wěn)定性因素,發(fā)現(xiàn)Mn元素的含量是影響其穩(wěn)定性的主要因素。不同晶粒尺寸和Mn含量的RA具有不同等級的RA穩(wěn)定性。實驗鋼RA中存在明顯的Mn配分行為,進(jìn)而導(dǎo)致RA具有不同級別的穩(wěn)定性,也因此表現(xiàn)出不同的加工硬化行為。本論文設(shè)計的4Mn-Nb-Mo和5Mn-Nb-Mo兩種低合金實驗鋼在擁有明顯綜合性能優(yōu)勢的同時達(dá)到了盡量減少總合金元素含量的目的。
(6)65錳鋼板三種實驗鋼S3階段加工硬化率曲線的大幅度波動歸因于不連續(xù)TRIP效應(yīng)。其原因在于RA在拉伸過程中轉(zhuǎn)變?yōu)轳R氏體并且發(fā)生了體積膨脹,進(jìn)而抵消部分應(yīng)力集中并使應(yīng)力轉(zhuǎn)移到周圍相中而產(chǎn)生協(xié)同變形,伴隨著應(yīng)力的松弛和轉(zhuǎn)移;其次,實驗鋼中的RA需要有不同等級批次的穩(wěn)定性,當(dāng)應(yīng)力值達(dá)到或超過該等級批次RA可發(fā)生相變的臨界值才可產(chǎn)生TRIP效應(yīng)。(7)Ms點受到RA中化學(xué)成分、晶粒尺寸、屈服強(qiáng)度和應(yīng)力狀態(tài)等作用影響。可通過將實驗鋼MSσ溫度控制在使用溫度以下,以獲得更多更穩(wěn)定的RA,進(jìn)而產(chǎn)生更為廣泛的TRIP效應(yīng),終提高實驗鋼的綜合性能。
本文意在解決高錳鋼在低應(yīng)力條件下耐磨性較差的缺點,同時滿足其在高應(yīng)力沖擊下保持較好的沖擊韌性,開展了高錳鋼表面等離子熔覆FeCoNiCrMnTix高熵合金涂層的探索,研究了高65錳鋼板錳鋼表面等離子熔覆FeCoNiCrMnTix高熵合金涂層后,以及對FeCoNiCrMnTix高熵合金涂層/高錳鋼基體進(jìn)行時效處理后的組織與性能的演變,探明Ti元素的添加以及時效處理對于FeCoNiCrMn系高熵合金涂層組織與性能的影響,為后續(xù)在高錳鋼表面制備出能夠承受高低應(yīng)沖擊高熵合金耐磨涂層提供參考。
試驗結(jié)果表明:FeCoNiCrMnTix高熵合金涂層在熔覆后表層晶粒結(jié)構(gòu)為等軸晶,同時有少量共晶組織產(chǎn)生,熔覆層中部為樹枝晶,與基體接觸的熔覆層底部為胞狀晶;在時效后熔覆層整體的等軸晶增多,相應(yīng)的樹枝晶和胞狀晶有所減少。熔覆后FeCoNiCrMnTix的物相構(gòu)成比較單一穩(wěn)定,65mn冷軋鋼板當(dāng)x=0的時候熔覆層的物相組成由單一的FCC相組成,主要相為Fe0.64Ni0.36,當(dāng)Ti元素加入后,有BCC相Co3Ti產(chǎn)生,且新相Co3Ti的峰值也隨Ti元素的增多而提高。在時效過后熔覆層的物相組成沒有很大差別,Co3Ti析出物有了明顯的增多,峰值也有了明顯的提高。整體上各個試樣的硬度從熔覆層到熱影響區(qū)再到基體呈下降趨勢。
65mn錳冷軋鋼板熔覆后的涂層硬度由表至里變化趨勢略下降;時效處理后的涂層硬度由表至里的下降趨勢不明顯,涂層的硬度較為平均,且時效處理前后的試樣 硬度值都隨Ti含量的增多而。其中基體的硬度值在220.4HV左右,熔覆后的高熵合金涂層 硬度值為344.5HV。時效處理后FeCoNiCrMnTi0.5高熵合金涂層的 硬度值為469.7HV。