對于大傾覆力矩、重載疲勞和高沖擊高磨損的軸承材料,通常采用感應(yīng)淬火進(jìn)行表面強(qiáng)化,但存在軟帶和變形大等問題。而使用激光淬火硬化層深度在1 mm以內(nèi),42crmo鋼板且橫截面硬化層為"月牙形",試樣表面各點(diǎn)硬化層分布不均,較淺處易提前發(fā)生損壞。
為解決以上問題,利用COMSOL軟件模擬激光深層淬火過程溫度場時空分布,與常規(guī)激光淬火不同,激光深層淬火采用了寬光斑、低速掃描,且輔助用于提高吸光率的涂料,在軟件中設(shè)定不同激光功率、掃描速度和光斑尺寸,分析得到不同工藝參數(shù)下的溫度場分布、硬化層形貌和特征尺寸,并在模擬指導(dǎo)下進(jìn)行實驗得到深層硬化層,并探究光斑尺寸對硬化層深度、寬度、均勻性的影響。模擬結(jié)果表明,選擇適當(dāng)?shù)募す夤β拭芏群蛼呙杷俣冗M(jìn)行激光淬火溫度場的模擬,可以得到3.6 mm深的硬化層。以此進(jìn)行光纖耦合半導(dǎo)體激光器淬火實驗,實驗所得有效硬化層深度為3.7 mm,硬化層平均硬度為774 HV0.3。42crmo鋼板將實驗所得硬化層形貌和模擬結(jié)果進(jìn)行對比,平均誤差為6.5%。模擬結(jié)果還表明,在激光功率、光斑面積和掃描速度不變時,改變光斑的寬度,硬化層的寬度與光斑的寬度成正比例,硬化層的深度隨光斑寬度增加先增加后減小。隨著光斑寬度增加,硬化層分布更加均勻。
利用金相顯鏡、洛氏硬度計和掃描電鏡,對經(jīng)過預(yù)備熱處理(退火、淬火、調(diào)質(zhì))+亞溫淬火+高溫回火處理(又稱臨界區(qū)淬火+回火)后的42CrMo鋼的組織、沖擊性能以及斷口形貌進(jìn)行了觀察和分析。結(jié)果表明,預(yù)備熱處理為退火處理時,亞溫處理后殘留的鐵素體粗大不均;且在回火索氏體之間分布不均勻;預(yù)備熱處理為淬火處理和調(diào)質(zhì)處理時,殘留的鐵素體形態(tài)細(xì)小,且與回火索氏體均勻分布。采用不同預(yù)備熱處理時,亞溫處理后的硬度差別很小。亞溫處理后42CrMo鋼的沖擊性能均高于常規(guī)調(diào)質(zhì)處理后的沖擊性能;預(yù)備熱處理為調(diào)質(zhì)處理時,亞溫處理后的沖擊功 ,從其斷口形貌中可以看出,其起裂區(qū)和裂紋纖維擴(kuò)展區(qū)所占比例較退火處理和淬火處理時要大。因此,調(diào)質(zhì)處理更適合作為42CrMo鋼的預(yù)備處理。
為了提高刀具用42CrMo鋼板的耐磨性能,采用電弧離子鍍技術(shù)在其表面沉積制備TiAlSiN涂層,并測試分析了勵磁電壓對其組織結(jié)構(gòu)及摩擦學(xué)性能的影響。研究結(jié)果表明:提高電壓后涂層表面粗糙度也隨之增大,制得厚度更大的TiAlSiN涂層,從初的2.16μm持續(xù)增大到4.85μm,表面粗糙度增大。隨電壓升高,涂層沿垂直基體表面的方向生長,獲得了更明顯的柱狀晶,空隙數(shù)量也進(jìn)一步增加,降低了涂層的組織致密度。隨著電壓的上升,等離子體離化率也明顯,制備得到了硬度更高的涂層,涂層的厚度也明顯增大。電壓增加過程中,TiAlSiN涂層的摩擦系數(shù)和磨損率表現(xiàn)出先下降再升高的變化規(guī)律,當(dāng)電壓達(dá)到30 V電壓時獲得了 磨損率。涂層存在磨粒磨損現(xiàn)象,可以觀察到部分涂層發(fā)生了剝落。30 V電壓時涂層表面變得更加平整,形成了更加致密的組織,耐磨性顯著提高。
針對石油平臺35CrMo鋼大齒輪、42CrMo鋼板小齒輪的齒面缺陷修復(fù)任務(wù),對齒輪材質(zhì)、零件現(xiàn)狀開展了工藝修復(fù)研究。通過對CO2氣體保護(hù)焊、氬弧焊、光纖激光焊三種焊接工藝進(jìn)行分析比較,發(fā)現(xiàn)光纖激光焊修復(fù)齒輪缺陷優(yōu)勢明顯。經(jīng)過齒輪實際修復(fù)后的檢測與試驗,取得了比較好的效果。
通過顯組織觀察和力學(xué)性能檢測,分析了42crmo鋼板在不同回火溫度下觀組織形貌和力學(xué)性能的變化。通過三維原子探針(3DAP)技術(shù)分析500℃回火溫度下42CrMo鋼中元素分布情況,研究了Cr、Mn、Mo等合金元素對鋼性能的影響。結(jié)果表明,42CrMo鋼水淬后在450℃回火時顯組織為回火屈氏體,在500~650℃區(qū)間回火時顯組織均為回火索氏體,隨著回火溫度的增加,顆粒狀碳化物增多;抗拉強(qiáng)度和規(guī)定塑性延伸強(qiáng)度降低,-40℃低溫沖擊性能升高。在500℃回火可達(dá)到12.9級螺栓力學(xué)指標(biāo)(Rm≥1200 MPa,KV2≥27 J),力學(xué)性能 ,且滿足低溫環(huán)境下螺栓用鋼的使用要求。3DAP結(jié)果表明,鋼中的合金元素通過固溶強(qiáng)化和沉淀強(qiáng)化提高了鋼的性能。
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(淄博市分公司)憑借雄厚的 45#特厚板材技術(shù)實力,精湛的 45#特厚板材工藝,過硬的 45#特厚板材產(chǎn)品質(zhì)量,完善的服務(wù)體系,成為 45#特厚板材行業(yè)中深受客戶歡迎和信賴的公司。堅信重質(zhì)量,講信譽(yù),優(yōu)服務(wù)的經(jīng)營理念,真誠地與各界朋友攜手共進(jìn),創(chuàng)造美好未來!
42CrMo鋼板齒圈毛坯的淬火通常采用油淬或聚合物水溶液淬火來避免淬火的開裂,但油淬或聚合物水溶液淬火導(dǎo)致嚴(yán)重的環(huán)境污染。改用水淬不僅可滿足綠色環(huán)保的要求而且可降低成本,但極易產(chǎn)生開裂。針對上述問題,本研究基于溫度場、組織場和應(yīng)力場的有限元模擬,獲得優(yōu)化的水-空交替控時淬火冷卻(ATQ)工藝,成功應(yīng)用于大直徑(ф1970 mm)的42CrMo鋼齒圈毛坯的淬火冷卻。結(jié)果表明:采用ATQ工藝處理42CrMo鋼齒圈毛坯,不僅回火后的力學(xué)性能高于性能指標(biāo)要求,而且有效避免了淬火開裂。
對42CrMo鋼板軋制工藝參數(shù)進(jìn)行了的優(yōu)化,研究了不同加熱、軋制溫度的42CrMo鋼棒材組織及布氏硬度變化規(guī)律。結(jié)果表明,通過控制加熱、均熱段溫度和終軋溫度可有效控制熱軋態(tài)42CrMo鋼棒材組織及布氏硬度;42CrMo鋼棒材開裂原因主要是軋制后產(chǎn)生大量的貝氏體組織,且沿棒材橫斷面分布不均勻,由邊部到心部的貝氏體含量減小,布氏硬度則由大變小。熱軋鋼布氏硬度≤260HBW時可避免在棒材剪切下料過程開裂、掉塊現(xiàn)象。
利用高壓水射流噴丸技術(shù)(WSP)和真空脈沖等離子氮化技術(shù),研究了水射流噴丸預(yù)處理對42CrMo鋼等離子氮化后的滾動接觸疲勞性能的影響。采用OM、SEM、TEM、XRD應(yīng)力測定儀、表面粗糙度儀、顯硬度儀對等離子氮化和復(fù)合處理后試樣的滲層顯組織、結(jié)構(gòu)以及表面完整性進(jìn)行了表征,并對疲勞斷口形貌進(jìn)行了分析。42crmo鋼板結(jié)果表明:經(jīng)過WSP預(yù)處理后,42CrMo鋼獲得了更好的氮化效果,疲勞性能得到大幅。原因是經(jīng)WSP預(yù)處理后,試樣表面細(xì)小彌散的氮化物和表層晶粒的細(xì)化有利于抑制表面裂紋的萌生與擴(kuò)展,改變了疲勞裂紋的萌生機(jī)制,次表層硬度的提高以及更深的殘余壓應(yīng)力影響層推遲了次表層裂紋的萌生,更高的次表層殘余壓應(yīng)力抑制了次表層二次裂紋的萌生以及主裂紋的擴(kuò)展,延長了42CrMo鋼滲氮后的接觸疲勞壽命,使得失效機(jī)理更接近于赫茲理論。
。在激光功率密度不變時,隨著垂直于掃描方向上的光斑寬度增加,硬化層寬度呈正比例增加,硬化層深度則先增后減,距離硬化層中心深處相同距離點(diǎn)的曲率則逐漸減少。結(jié)論通過優(yōu)化激光淬火工藝參數(shù),控制激光淬火的熱傳導(dǎo)時間和深度方向的溫度梯度分布,可以在表面不熔化的前提下,獲得較深的硬化層。光斑尺寸對42CrMo鋼板激光深層淬火硬化層深度和硬化層均勻性有較大影響,選擇較大的光斑寬度可以得到更為均勻的硬化層。
本文對實驗用鋼42CrMo進(jìn)行了成分測定、熱處理工藝設(shè)計、組織表征、性能檢測與分析等研究。采用Jmat-pro軟件模擬了42CrMo鋼的冷卻轉(zhuǎn)變過程,并實測了實驗用鋼的連續(xù)冷卻轉(zhuǎn)變曲線和等溫轉(zhuǎn)變曲線,利用OM、SEM、硬度測量等手段分析了不同冷卻速度和等溫溫度下的組織及特征,特別是貝氏體轉(zhuǎn)變區(qū)間、類型、特征和含量等與硬度的關(guān)系,通過熱處理工藝設(shè)計調(diào)控組織,建立了觀組織與硬度、韌性和耐磨性等之間的關(guān)系。42CrMo鋼板的連續(xù)冷卻轉(zhuǎn)變曲線CCT圖表明,Ac1為743℃,Ac3為792℃,在實驗的冷速范圍內(nèi),存在有先共析鐵素體、珠光體、貝氏體和馬氏體四個轉(zhuǎn)變區(qū);冷速大于3℃/s,獲得羽毛狀上貝和針片狀下貝為主的復(fù)相組織,隨冷速增加,組織中馬氏體含量增加,混合貝氏體相中上貝氏體量減少,硬度呈上升趨勢,冷速20℃/s,獲得馬氏體基體+(3%5%)下貝氏體的復(fù)相組織。
等溫轉(zhuǎn)變曲線TTT圖表明,在410℃500℃區(qū)間等溫將發(fā)生上貝氏體轉(zhuǎn)變,組織為羽毛狀特征為主,下貝氏體轉(zhuǎn)變的等溫溫度介于310℃410℃之間,組織為針片狀貝氏體+板條狀馬氏體的復(fù)相組織,隨等溫溫度降低,馬氏體含量增加;在560℃-590℃之間等溫出現(xiàn)的大量針狀魏氏組織,與實驗材料組織不均,晶粒粗大有關(guān)。42crmo鋼板調(diào)質(zhì)熱處理工藝實驗結(jié)果表明,淬火加熱溫度840℃,采用18%水基淬火介質(zhì)冷卻,獲得下貝氏體含量約為20.3%的馬/貝復(fù)相組織,經(jīng)560℃回火,其綜合力學(xué)性能達(dá)到良好匹配;等溫?zé)崽幚砉に噷嶒灡砻?在320℃380℃區(qū)間等溫,